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Abstract

The objective of the thesis is to provide a focused, comprehensive code based on Computational Fluid
Dynamics to be applied to the study of natural and mixed convection of the air located outside an external
cylindrical receiver of a Concentrating Solar Power (CSP) plant. CSP plants are a rapidly improving
technology that is going to play an increasingly important role in electricity production in the decades to
come. Convection of outer air in CSP plants represent a major concern mainly for two reasons: it must
be solved to assess the thermal balance at the receiver and to calculate the local temperature of the
materials; in fact, failure still represents an issue for the design of this component. The code will need
to be able to describe both aspects. Therefore, a Direct Numerical Simulation approach is used, since
it is able to solve thoroughly the three main equations that govern convection: the mass, momentum
and energy conservation equations. In order to evaluate the change of the thermophysical properties
due to the variation of temperature, a non-Boussinesq approach is proposed to solve the equations.
After a contextualization of the external air convective losses of a Central Receiver System, the code
is progressively built and validated, and a possible setup for its application to the thermal receiver is
presented.
Keywords: Concentrating Solar Power; Computational Fluid Dynamics; Thermal receiver; Natural
convection.

1. Introduction

Renewable electricity generation is rapidly grow-
ing, especially due to the push given by develop-
ing countries [1]. These technologies, as well as
the traditional ones, require a deep understanding
of the energy transfer processes in order to design
the components to maximize the efficiency of the
plant. A large majority of these transfer processes
involve kinetic energy and heat transfer between
fluids. Both processes depend on three equations
that govern them: the mass, momentum, and en-
ergy conservation equations. In a vast majority
of cases, an analytical solution of these equations
cannot be found; therefore, two approaches can be
used: the use of empirical correlations or the use
of numerical simulation. Although the former are
reliable since they come from physical evidence,
they cannot provide a solution for a complex phe-
nomenon that has a high-local dependence: turbu-
lence is an example of chaotic, locally-dependent
phenomenon that cannot be integrally modeled by
the global approach of the correlations. In contrast,

Computational Fluid Dynamics (CFD) can provide
a local resolution of complex phenomena.

The aim of the thesis is the study of the natural
convection (that is governed by the three equations
mentioned) for the external air at a thermal receiver
of a Concentrated Solar Power (CSP) plant. In
the design of such plants, the prediction of locally-
dependent variables as temperature and material
stresses is crucial. Therefore, a CFD code able to
compute (locally and globally) natural convection
at a receiver will be developed. A Direct Numeri-
cal Simulation (DNS) will be used, given its relia-
bility in the resolution of the governing equations.
Moreover, convection will be solved with a model
that considers the variation of air properties due to
temperature, in contrast to the majority of the sim-
ulations available in the literature (according to Le
Quéré et al. [14]).

2. Concentrated Solar Power – State of the Art &
Economical Analysis

CSP is a technology that uses solar beam radi-
ation to heat up a fluid that generates electricity
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Table 1: Some characteristics of the main CSP configurations (state of the art) [22], [25].

Parabolic trough Solar tower Linear Fresnel Dish-Stirling

Maturity of Commercially Commercially Early commericial Demonstration
Technology proven proven projects projects
Operating 350-400 250-565 250-350 550-750temperature [◦C]
Global efficiency [η] 0.1-0.16 0.1-0.22 0.8-0.12 0.16-0.29
Receiver/absorber Moving with collector Fixed Fixed Moving with collector
Outlook for Limited Very significant High (through
improvements Significant mass production)

Advantages Mature technology, High η, Fixed, High η, Modular units,
Modular units Compatible with Low investment Compatible with

Brayton cycle costs Brayton cycle

Disadvantages Relatively low η High O&M costs Relatively low η
No thermal storage
available, low maturity

by undergoing a thermodynamic cycle. There are
four main configurations of CSP plants: Parabolic
Trough Collector (PTC), Linear Fresnel Reflec-
tor (LFR), Central Receiver System (CRS) and
Parabolic Dish System (PDS). Two main compo-
nents of a CSP plant are the collector and the
receiver: the former is responsible for collecting
the sun radiation, and the latter for its absorption.
The solar energy absorbed is then transfered to a
Heat-Transfer Fluid (HTF). PTC is the most mature
technology: it consists in a set of one-axis tracking
parabolic mirrors that focus the sun rays onto the
selective surface of the receiver tube. The receiver
moves in tandem with the collector. LFRs are sim-
ilar, but use flat mirrors recreating a parabola as
collectors; differently from PTCs, the receiver is
fixed. CRSs use a field of flat two-axes track-
ing mirrors (called heliostats) to focus solar radi-
ation onto a single central receiver located at the
top of a tower. PDSs consist in two-axes tracking
paraboloid-shaped mirrors that focus solar radia-
tion onto a Stirling engine.

Both collector and receiver require a high level
of technology. Regarding collectors, R&D is try-
ing to improve materials reflectivity to develop ef-
ficient mirrors; moreover, it is struggling to reduce
the investment cost: on the one side by reducing
the manufacture process complexity, on the other
side by estimating the optimal size of the mirrors.
The development of efficacious dust-cleaning tech-
nologies could help to maintain a high efficiency
throughout the operative life of the plant. PTC re-
ceivers’ main objective is to guarantee a high rate
of absorption of solar radiation and simultaneously
a low rate of emission. This is accomplished with
solar-transparent glass enclosing a selective sur-
face, being the two separated by a vacuum (or air)
zone. CRS’s receivers are divided into tubular and
volumetric receivers. The former are composed
of a set of tubes in which the HTF flows and ab-
sorbs the incoming energy. The latter use a porous
medium that absorbs solar radiation and passes it
to external air sucked from ambient. Tubular re-

ceivers divide in external and cavity receiver; the
difference is that the former is put in direct contact
with the atmosphere, while the second is enclosed
by a cavity. Volumetric receivers divide in open vol-

Figure 1: Example of an external cylindrical receiver

umetric and closed (or pressurized) volumetric re-
ceivers. The former suck air at ambient pressure;
therefore, heated air has to exchange energy in
a heat exchanger with a second fluid undergoing
the thermodynamic cycle. The latter instead, drive
air mechanically into the receiver, pressurizing it;
heated air can be used directly in a Brayton cycle.

The most used HTFs are air, steam and molten
salt; the selection of the fluid must consider costs
and thermodynamic properties: low viscosity, high
conductivity and low thermal degradation are gen-
erally sought. HTFs should also be characterized
by a good heat removal capability, that is crucial
when Thermal Energy Storage (TES) is present.
TES consists in storing the energy absorbed by the
heated fluid to extend the operation of the plant and
increase its output: in fact, solar radiation is avail-
able only for a number of hours every day. It is
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said to be direct if the fluid used to store energy is
the one used to collect it, and indirect otherwise.
Energy can be stored as sensible heat, latent heat
or thermo-chemical heat. The former is based on
internal energy variation due to temperature differ-
ences while the second due to phase change; the
third, instead, is based on a thermo-chemical re-
action. The Single-Tank Thermocline System is
a particular type of storage that exploits the buoy-
ancy effects of the HTF to store energy in a solid
medium. TES is particularly interesting for CRSs,
since temperatures in these plants are higher, giv-
ing the possibility to store more energy per tank.

The use of renewable technologies is rapidly
growing for two reasons: on the one hand, govern-
ments are pushing clean technologies concerned
for climate issues; on the other hand, the tech-
nologies per se are becoming more and more prof-
itable. CSP is expected to boost its installed power
by 2040, when it is expected to produce about
200 times the energy it produces nowadays, es-
pecially due to the progress of the CRS configura-
tion [13]. CSP is particularly present in two coun-
tries: Spain and United States. This is the result of
three processes: the effort in R&D that both coun-
tries put, the economic incentives given by the gov-
ernments and an important amount solar resource,
measured as the Direct Normal Irradiance (DNI).
DNI is a parameter that measures the average di-
rect solar energy that hits a specific location. “Di-
rect” refers to the share of solar radiation that has
not interacted with the atmosphere and maintained
its original direction; this radiation is the one that
can be focused on a CSP receiver. Many devel-
oping countries have a high DNI, making CSP an
even more interesting technology: if the cost reduc-
tion trend keeps on occurring, such countries could
adopt this technology; this is already happening
(for example, in China and Chile, where several
projects have been commissioned) [12]. One of
the main issues of CSP is that it is put in direct
competition with PV energy, since both rely on so-
lar energy. PV has been undergoing a rapid cost
reduction that is expected to continue. To compete
with this technology (and the traditional ones), it is
crucial for CSP to improve TES systems: in fact,
on the one hand, TES improves the dispatchability
and reliability of the renewable technology (some-
thing that cannot be achieved by PV without the
use of batteries, still too expensive); on the other
hand, makes it possible to maintain the electricity
production in the afternoon, when the electricity of-
fer is lower and sales more profitable. Since CRSs
are currently expected to be the most successful
CSP technology [13], they will be investigated in
this thesis.

3. Concentrated Solar Power – Optical and Thermal
losses

Before the development of the code regarding nat-
ural convection, the plant losses at the collector
and receiver are explained. This can help to con-
textualize the role of convection among all the heat
losses that happen outside the plant. The first loss
that occurs to solar radiation takes place when it
enters Earth’s atmosphere. The phenomenon is
known as scattering: a certain amount of radia-
tion is deviated by the atmosphere particles and
loses its original direction. This deviated radia-
tion cannot be used in a CSP plant because it
cannot be pointed to the receiver; the remaining
part, which is the one that the plant can exploit, is
called beam (or direct) radiation. Beam radiation
is reflected towards the receiver; however, a sig-
nificant part of it is lost in the path. All the losses
that occur in the path from the collector to the re-
ceiver are called optical losses. Firstly, the co-
sine losses express the part of the radiation that
is lost due to the fact that mirrors are not per-
pendicular to sun rays, so their effective area is
lower. An efficiency can be associated with the
process: ηcos = cos θ, where θ is the angle be-
tween the direction of the rays and the normal to
the surface of the heliostats. Then, the reflectiv-
ity losses express the energy lost due to the ab-
sorption of the heliostats: the efficiency associated
is ηref = ρh, where ρh is the reflectivity of the
heliostats. Part of energy reflected by a heliostat
can be blocked by others placed near; moreover,
some mirrors can put others partially in shade.
The efficiency related to the blocking/shading phe-
nomenon is ηbs = 1 − blocked and shaded surface

total surface . Part
of the solar radiation reflected by the heliostats is
absorbed by the atmosphere (the phenomenon is
called atmospheric attenuation). According to the
Pitman and Vant-Hull model [3], the efficiency as-
sociated is ηatm = τatm = e−ξ R

S

, where τatm is the
air transmittance, R is the slant range, ξ is the the
broadband extinction coefficient, and S is a propor-
tionality constant. Finally, the spillage losses are
caused by the non-perfect pointing of the radiation
to the receiver [18]. Their associated efficiency is

ηspil = 1
2π·σ2

tot

∫
x

∫
y
e
− x

2+y2

2 σ2tot dy dx, where σtot rep-
resents the standard deviation that characterizes
the radiation dispersion. Combining all the losses,
the optical losses become

ηopt = ηcos ηref ηbs ηatm ηspil (1)

Before being absorbed by the HTF, the energy in-
cident on the receiver undergoes other losses, that
are called thermal losses. The absorption losses
are given by the partial reflection of this amount of
energy at the receiver: Q̇ref = ρrQ̇in, where ρr
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is the reflectivity of the receiver. Then, the con-
vective losses are due to the energy that is trans-
fered to the air surrounding the receiver: Q̇conv =
h (Tr − Tamb) Ar, where h is the heat transfer co-
efficient between the receiver and air, Tr is the re-
ceiver temperature, Tamb is ambient temperature
and Ar is the receiver surface. h is evaluated with
the correlation given by Siebers & Kraabal [19] that
takes into account forced and natural convection.
For cylindrical receivers, the heat transfer coeffi-
cient can be expressed as a function of the val-
ues it would take if forced convection (h̄f ) and nat-
ural convection (h̄n) were considered separately:

h̄ =
(
h̄3.2f + h̄3.2n

)1/3.2
. Forced convection is calcu-

lated with a correlation of a cross-flow on a cylin-
der with pyramidal shaped roughness elements,
that expresses hf as a function of the Reynolds
ReD = ρ uD

µ and Nusselt number NuD =
hf D
k

relative to the diameter D of the receiver. Natu-
ral convection is calculated with a correlation for a
vertical flat plate, that expresses hn as a function
of the Grashof GrH = ρ2 g β (Tr−Tamb)H3

µ2 and Nus-
selt numberNuH = hnH

k relative to the heightH of
the receiver. Finally, part of the energy captured by
the receiver is lost as thermal radiation. Assuming
the ambient a black body and the receiver a diffuse
surface, the radiative losses can be expressed as
Q̇rad = εr σ

(
T 4
r − T 4

sg

)
Ar, where εr is the emis-

sivity of the receiver, σ is the Boltzmann constant
and Tsg is the average sky-ground temperature. A
global thermal efficiency can be defined as

ηth =
Q̇in − Q̇ref − Q̇cond − Q̇conv − Q̇rad

Q̇in
(2)

Acknowledged these losses, a simulation is per-
formed on an illustrative plant (having an exter-
nal cylindrical receiver). The characteristics of the
plant are mainly extracted from a paper describ-
ing the Solar Two CRS plant [17]; the ones not re-
ported are assumed consulting the literature. The
results are reported in tab. 2. Then, a sensitivity

Table 2: Base case results – efficiency and heat balance.

Efficiency [%] Heat [MW]

ηcos 86.6 Q̇sol 61.05

ηref 90.8 Q̇in 44.18

ηbs 93.0 Q̇r, ref 0.52

ηatm 99.3 Q̇conv 0.20

ηspil 99.0 Q̇rad 1.67

ηopt 72.4 Q̇u 41.79
ηth 94.6

ηoverall 68.5

analysis that recreates the different conditions at
which the plant can operate is performed. The co-

sine losses are demonstrated to have a great influ-
ence, suggesting that during the plant design the
optimization of the heliostat disposition is a major
concern; moreover, it is shown that there is always
a temperature of the receiver that optimizes the
global efficiency of the plant; furthermore, both the
receiver absorptance and emissivity show to play
an important role in the optimization of the plant
efficiency. Convection is demonstrated to play an
important role among the thermal losses, as shown
in tab. 2 (it counts for around the 10%). Moreover,
convection losses can become the most impacting
thermal loss when the wind velocity is major than a
certain value.

The procedure followed considered natural con-
vection as a global process, through the use of a
general correlation. However, convection at a ther-
mal receiver always involves a high rate of turbu-
lence, that cannot be fully described with a global
approach. Turbulence causes a spacial-dependent
distribution of temperature and fluid velocity, that
can lead to local overheating and, eventually, fail-
ure of the receiver. Therefore, it is clear that con-
vection must be solved with a more powerful tool,
that can describe it both locally and globally.

Therefore, a CFD code to describe natural con-
vection at a receiver of a CRS is proposed. As ex-
plained in the introduction, it consists in a DNS that
considers the dependence of the air thermophysi-
cal properties on the temperature; this approach
particularly suitable for the study of natural convec-
tion of a receiver, where temperature gradients are
usually very high.

4. Mathematical Formulation
The main equations that govern the flow of a fluid
and its energy transfer processes are three: the
mass, momentum and energy conservation equa-
tions. All can be viewed as a particular case of a
single equation: the convection-diffusion equa-
tion

∂(ρ φ)

∂t
+∇ · (ρuφ) = ∇ · (Γ∇φ) + Sφ (3)

where ρ is the fluid density, φ is the variable of in-
terest, u is the velocity vector, Γ is the diffusion co-
efficient and Sφ is the source term. The mass, mo-
mentum, and energy equations are presented for
incompressible fluids: in fact, in convection prob-
lems the effects of the compressibility of the air can
be neglected. For such fluids, the mass equation
is

∇ · u = 0 (4)

The momentum equation (also known as the
Navier-Stokes equation for incompressible fluids)
can be expressed as the function of the rate-of-
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strain tensor S = 1
2

(
∇u +∇uT

)
:

ρ
∂u

∂t
+ ρ (u · ∇) u = −∇p+∇ · (2µS) + ρg (5)

where g is the gravity acceleration, p is the pres-
sure and µ the viscosity of the fluid. In case the
viscosity is constant, the equation becomes

ρ
∂u

∂t
+ ρ (u · ∇) u = −∇p+ µ∇2u + ρg (6)

The energy equation can be expressed as

ρ cP
∂T

∂t
+ ρ cP u · ∇T = ∇ · (k∇T )−∇ · q̇R (7)

where cP is the specific heat, T is the tempera-
ture, k is the conductivity and∇· q̇R represents the
sum of the incoming heat without considering con-
duction. The Boussinesq approximation is a sim-
plification of the momentum and energy equations,
that states that the thermophysical properties can
be considered constant except density in the buoy-
ancy forces (the term ρg). In the buoyancy forces,
the density can be assumed linear with the temper-
ature ρ0 [1− β (T − T0)] g; this simplifies the mo-
mentum and the energy equations to

ρ0
∂u

∂t
+ ρ0 (u · ∇) u =

−∇p′ + µ∇2u− ρ0 β (T − T0)g (8)

ρ0 cP
∂T

∂t
+ ρ0 cP u · ∇T = k∇2T −∇ · q̇R (9)

The Boussinesq approximation simplifies signifi-
cantly the computation, and it is generally as-
sumed to be valid for a low temperature range
∆Tmax = 10K. The last equation analyzed (still
a convection-diffusion equation) describes conduc-
tion in solids:

ρ cP
∂T

∂t
= ∇ · (k∇T )−∇ · q̇R (10)

It is important to model conduction in thermal re-
ceivers because it governs the heat transfer be-
tween hotter and colder sections of the receiver (so
it must be taken into account to compute the tem-
perature distribution at the receiver panels).

5. Numerical Methodology
The discretization method used in the codes is the
Finite Volume Method (FVM). This method is par-
ticularly effective when used to solve simple ge-
ometries. The domain is divided in a certain num-
ber of control volumes. For every volume, a unique
thermodynamic state is defined. The volumes are
connected with a grid; the nodes of the grid rep-
resent a single control volume and are located at
their center: for this reason, the approach is called

node centered. The grid is said to be structured,
since it is characterized by a regular connectivity.
In FVM, properties are evaluated at the center of
the volume, whereas flows are evaluated at the
surfaces of the volume.

Both explicit and implicit time-discretization
methods are presented: in the former, the un-
knowns are expressed as a function of known vari-
ables; in the latter, at least one unknown is a func-
tion of other unknowns. A disadvantage of ex-
plicit methods is that the time step selected cannot
exceed a certain value, defined by the Courant-
Friedrichs-Lewy (CFL) conditions [6]. The value
is usually really small, hence it increases dramat-
ically the computational time of the code. In this
work, implicit problems are solved with a line-by-
line Tri-Diagonal Matrix Algorithm (TDMA). In case
the third dimension is considered, the line-by-line
algorithm is looped with a Gauss-Siedel algorithm.
Both TDMA and algorithms are described by Conte
& Boor [5].

In parallel to the mesh presented, another type
of mesh is used. In fact, all the velocity compo-
nents are defined at the walls of the control vol-
umes of the main mesh (as shown in fig. 2). The

Figure 2: Staggered mesh. The gray areas represent the x and
y staggered control volumes.

shifted mesh created is called staggered mesh. In
contrast, the main mesh is called collocated mesh.
Except the velocities (and consequently the mass
flows), all the properties are defined in correspon-
dence to the collocated mesh.

6. Heat Transfer Processes – Computational Study
The code for the analysis of natural convection is
built from scratch. To validate it, it is necessary
to solve some benchmark problems and verify that
the results obtained are close to the solution given
by other authors.

The first two problems regard the convection-
diffusion equation. The first is a problem of 2D
conduction (a type of heat diffusion, occurring in
solids). The goal is to solve the unsteady heat
transfer at a rod composed of four materials having
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different thermophysical properties. The problem

Figure 3: Section of the rod, showing the four materials it is
composed of.

is solved with a constant, collocated mesh. Three
time-discretization methods are investigated: the
explicit Euler, the implicit Euler and the Crank-
Nicolson method. The first two methods are first-
order, while the second is second-order. The re-
sults obtained with the three methods are com-
pared with the reference solution. Since the differ-
ences are really small, the three of them are con-
sidered to be correct.

The second problem regards the resolution of
the convection-diffusion equation for a given flow.
It is known as the Smith-Hutton problem [21]. The
flow is shown in fig. 4. The problem introduces

Figure 4: Smith-Hutton problem configuration. Figure retrieved
from Smith & Hutton [21].

the need for a convection scheme to evaluate
the mass flow at the surfaces of the control vol-
umes. In fact, with this configuration the stag-
gered mesh is not used: the velocity components
are referred to a regular collocated mesh. The
velocity value at the surfaces is obtained by in-
terpolation performed with a convective scheme.
Five convective schemes are presented: the Up-
wind Difference Scheme (UDS), the Central Dif-
ference Scheme (CDS), the Second-order Up-
wind Difference Scheme (SUDS), the Quadratic

Upstream Interpolation for Convective Kinematics
scheme (QUICK), and the Sharp and Monotonic
Algorithm for Realistic Transport (SMART). The re-
sults are compared with a benchmark solution.
The SMART scheme demonstrates to be the most
precise one; moreover, it is the only scheme that
does not present unrealistic energy damping or ev-
ident unphysical distributions of the unknown prop-
erty φ. Therefore, it is selected to be the convective
scheme applied to the next convective problems.

The next two problems analyzed introduce the
computation of laminar flows. The first one is the
2D driven cavity problem. The benchmark solu-
tion is given by Ghia, Ghia & Shin [11]. The goal
is to solve the fluid flow in a cavity whose upper
wall is moving at a constant velocity. The problem

Figure 5: Horizontal section of the driven cavity. Figure re-
trieved from Marchi, Suero & Araki [15].

is solved with the Fractional Step Method (FSM),
firstly introduced by Chorin [4], in which the mo-
mentum equation is projected on a free-divergence
space. The velocity and pressure fields are com-
puted in the following way:

1. a projection velocity up is introduced and com-
puted with a second-order backward Adams-
Bashorth method;

2. the pressure field, expressed as a function of
the projection velocity, is computed implicitly
solving a Poisson equation;

3. the velocity field is computed (as a function of
the pressure and projection velocity), applying
the projection velocity definition.

The solution of the problem depends on the
Reynolds number: results for Reynolds ranging
from 100 to 7500 are presented. The velocity vari-
ation at the mid horizontal and vertical axes is com-
pared to the benchmark solution: no relevant differ-
ences are found, and the code is validated.

The energy conservation equation is introduced
with the Differentially Heated Cavity (DHC) prob-
lem. At first, the Boussinesq approximation is
assumed. The goal is to solve natural convec-
tion of air inside a cavity having two isothermal
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Figure 6: Laminar driven cavity problem – stream function ψ
map (Re = 1000, mesh 256× 256)

vertical walls and two adiabatic horizontal walls.
The nature of the problem depends on the non-
dimensional number Rayleigh defined as Ra =
Gr Pr. The Grashof number Gr has been already
presented in sec. 3. The Prandtl number is de-
fined as Pr = mucP

k . The energy equation (eq. 7)

Figure 7: Differentially Heated Cavity, section of the vertical
plane. Figure edited from de Vahl Davis & Jones [8].

is solved with a second-order backward Adams-
Bashforth method. Then, FSM is applied to the
momentum and continuity equation. The stream
function, velocity components, and Nusselt num-
ber at significant locations are compared with the
reference solution given by De Vahl Davis [8], [7].
The results agree with the benchmark solution,
meaning that the code is validated. Then, the
Boussinesq approximation is abandoned; in fact,
the approach is considered to be valid only for a

limited range of temperature. The approximation
would not obviously verify in the study of the ther-
mal receiver of a CRS plant: in fact, the temper-
ature difference between the receiver and ambient
air usually exceeds 300K (compare tab. 1). There-
fore, a different approach is used: the thermophys-
ical properties are assumed to depend on the tem-
perature following the correlations given by Eckert
& Drake [9]. The study is repeated, considering
the same temperature range. The results obtained
are almost identical to the previous ones, so the
model is assumed to be correct. Finally, the study
is extended to a 3D case. The marked increase
in the number of nodes makes the computational
time grow significantly: in order to keep it low, a
non-constant mesh is defined. In this mesh, node
spacing follows a hyperbolic function distribution,
depending on the concentration factor γ:

xw[i] =
D

2

1 +

tanh

[
γ

(
2
i− 1

N
− 1

)]
tanh γ

 (11)

where xw[i] represents the west face x-coordinate
of the control volume associated to the i-th hori-
zontal node. This mesh has the advantage that
resolves appropriately the flow at the wall. That re-
gion has to be well-resolved because it is charac-
terized by steep gradients of temperature and ve-
locity (a boundary layer is created). The results ob-
tained are compared with the 2D case, concluding
that the 3D computation is correct.

Figure 8: 3D DHC temperature map (variable thermophysical
properties), isothermal surfaces for Ra = 106.

Finally, turbulence is introduced in the driven
cavity and the Differentially Heated Cavity prob-
lems. The mesh is defined to solve appropriately
the thin boundary layers that form at the walls char-
acterized by high gradients of velocity (and temper-
ature); to do so, the method described by Zhang
et al. [26] is used: the viscous sublayer (which is
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the zone of the boundary layer that is put in direct
contact with the wall) is discretized with a sufficient
number of nodes. The method is based on the
computation of the wall shear stresses, since the
latter influence the viscous sublayer thickness.

In the driven cavity problem, turbulence arises
when Re ≈ 8000. The flow at the cavity becomes
unsteady: in particular, the eddies created at the
corners of the cavity become unstable, and they
start to separate periodically. This leads to a peri-
odic global flow: the whole velocity field oscillates
at a particular frequency. Averaged solutions and
frequency of oscillation are compared to bench-
mark solutions [10], [2]: the results are very sim-
ilar, and the conclusion is that the code developed
also works in turbulent flow problems. To have

Figure 9: Time oscillation of the horizontal component of the
velocity at a specific location of the cavity.

a further confirmation, the turbulent Differentially
Heated Cavity problem is analyzed. Turbulence
arises when Ra ≈ 1.03 · 108. Both the 2D and 3D
codes that consider the effect of the variable ther-
mophysical properties are verified with a bench-
mark case; however, the 3D problem shows some
minor discrepancies from the reference due to a
different definition of the boundary conditions.

The DNS codes are ready to be modified to be
applied to a case of natural convection occurring at
the receiver of a CSP plant. However, an approach
different from the DNS is analyzed: the Large Eddy
Simulation approach. This method is considered
because, even though it is not as precise as DNS,
it can reduce significantly the computational costs
if well-implemented. The LES approach to turbu-
lence consists in the modelization of the small-
est scales of motion: energy dissipation at small
scales is artificially carried out by filtering the mo-
mentum conservation equation. Five well-known
LES models are implemented: the Smagorinsky
model [20], the WALE model [16], the Vreman’s
model [24] and the Verstappen’s model [23]. How-
ever, the code computation crashes for the mod-
els different than the Smagorinsky model. More-
over, the latter demonstrates to be unsuitable to
solve problems that have a high dependence on
the boundary conditions. A correction of the part
of the code relative to the other four LES models is
left as a possible future improvement.

7. Setup for the Application of the Codes to a Ther-
mal Receiver

Having verified the DNS code developed, a possi-
ble application for the study of an external cylindri-
cal receiver is presented. The computation is not
performed because the resources available make it
impossible to provide a solution of the problem; in
fact, the elevated degree of turbulence requires a
suitable mesh that should consist in a too elevated
number of nodes to compute a result in a reason-
able amount of time. However, a 2D approach is
presented below. The region affected by natural

Figure 10: Mesh and boundary conditions definition for the
computational study of natural convection in a cylindrical tubular
receiver. The red line corresponds to a simplified panel of the
receiver.

convection can be assumed to be a cavity. In this
model, the vertical west wall tries to recreate a flat
panel of the tubular receiver. The central section
corresponds to the receiver itself, having the aver-
age temperature of T r; the upper and lower sec-
tions of the wall correspond to fictitious adiabatic
walls. The three other walls represent three fic-
titious walls having a temperature equal to Tamb.
The role of the fictitious walls is to recreate the
phenomena occurring in the real convection at the
receiver: the adiabatic walls drive the hot flux up-
wards, without introducing nor dissipating energy;
the walls at ambient temperature “artificially damp”
the energy absorbed by air, recreating the disper-
sion of the hot fluid in the ambient. It is crucial that
the fictitious walls have no noticeable effect on the
flow close to the receiver panel, where a poten-
tial Nusselt study can be performed. For this rea-
son, the energy-damping walls have to be put suf-
ficiently distant from the receiver: their placement
at a farther position should not change the convec-
tive losses at the receiver. The boundary layer at
the hot panel must be well-resolved; an adjusted
version of the hyperbolic mesh described by eq. 11
can be used. The same mesh function can be used
to design the vertical spacing for y coordinates be-
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tween the receiver and the horizontal walls; vertical
spacing at the receiver can be constant, as shown
in fig. 10.

8. Conclusion
Although it has not been possible to apply the code
developed directly to a thermal receiver, the code
has been demonstrated to work properly being
put in comparison with relevant benchmark cases;
then, a possible presentation of the application to
natural convection has been presented. The com-
putational structure developed represents an effi-
cient tool, tailored in order to be able to be applied
to solve natural convection problems that arise in
a thermal receiver of a CSP plant. The code gives
a strong result since it can provide the instant (or
time-averaged) values of:

• the local and global values of the heat transfer
(through the Nusselt number);

• the velocity, temperature and pressure field
throughout the whole domain;

• the local viscosity, conductivity and density of
the fluid;

• the shear stress at the walls τw.

The computation of the fields is particularly pre-
cise, since it is carried out through a DNS, that fully
solves the three equations.

The code developed still presents many limita-
tions, that must be acknowledged for a future use.
Its biggest limitation was the impossibility of testing
it with a real case of convection: this operation is
needed to confirm that the assumptions made are
correct. Moreover, in the discussion of the setup for
the application of the code to the receiver the tem-
perature of the receiver T r was assumed to be con-
stant. The real distribution of temperature could be
computed by solving the thermal balance at the re-
ceiver: to do so, the code developed could be mod-
ified to supply a version able to be applied to the
forced convection of the HTF flowing in the tubes
of the receiver. The code presented could also be
modified to solve forced convection cases; in that
case, a 3D simulation would become compulsory.
Moreover, a more suitable mesh should be defined.
Parallelization of the code should be considered,
in order to dramatically reduce the computational
time. Finally, the LES code could be corrected, giv-
ing the possibility to use it as an alternative to the
DNS.
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